On the κ-Deformed Cyclic Functions and the Generalized Fourier Series in the Framework of the κ-Algebra

نویسنده

  • Antonio Maria Scarfone
چکیده

We explore two possible generalizations of the Euler formula for the complex κ-exponential, which give two different sets of κ-deformed cyclic functions endowed with different analytical properties. In a case, the κ-sine and κ-cosine functions take real values on R and are characterized by an asymptotic log-periodic behavior. In the other case, the κ-cyclic functions take real values only in the region ∣x∣ ≤ 1/∣κ∣, while, for ∣x∣ > 1/∣κ∣, they assume purely imaginary values with an increasing modulus. However, the main mathematical properties of the standard cyclic functions, opportunely reformulated in the formalism of the κ-mathematics, are fulfilled by the two sets of the κ-trigonometric functions. In both cases, we study the orthogonality and the completeness relations and introduce their respective generalized Fourier series for square integrable functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized κ-Deformations and Deformed Relativistic Scalar Fields on Noncommutative Minkowski Space

We describe the generalized κ-deformations ofD = 4 relativistic symmetries with finite masslike deformation parameter κ and an arbitrary direction in κ-deformed Minkowski space being noncommutative. The corresponding bicovariant differential calculi on κdeformed Minkowski spaces are considered. Two distinguished cases are discussed: 5D noncommutative differential calculus (κ-deformation in time...

متن کامل

Noncommutative Parameters of Quantum Symmetries and Star Products

The star product technique translates the framework of local fields on noncommutative space–time into nonlocal fields on standard space– time. We consider the example of fields on κ– deformed Minkowski space, transforming under κ–deformed Poincaré group with noncommutative parameters. By extending the star product to the tensor product of functions on κ–deformed Minkowski space and κ-deformed P...

متن کامل

Deformed Algebras and Generalizations of Independence on Deformed Exponential Families

A deformed exponential family is a generalization of exponential families. Since the useful classes of power law tailed distributions are described by the deformed exponential families, they are important objects in the theory of complex systems. Though the deformed exponential families are defined by deformed exponential functions, these functions do not satisfy the law of exponents in general...

متن کامل

Local Field Theory on Κ-minkowski Space, Star Products and Noncommutative Translations

We consider local field theory on κ-deformed Minkowski space which is an example of solvable Lie-algebraic noncommutative structure. Using integration formula over κ-Minkowski space and κ-deformed Fourier transform we consider for deformed local fields the reality conditions as well as deformation of action functionals in standard Minkowski space. We present explicite formulas for two equivalen...

متن کامل

Κ-deformed Oscillators: Deformed Multiplication versus Deformed Flip Operator and Multiparticle Clusters

We transform the oscillator algebra with κ-deformed multiplication rule, proposed in [1, 2], into the oscillator algebra with κ-deformed flip operator and standard multiplication. We recall that the κ-multiplication of the κ-oscillators puts them off-shell. We study the explicit forms of modified mass-shell conditions in both formulations: with κ-multiplication and with κ-flip operation. On the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2015